MINOR PHENOLIC COMPOUNDS FROM Teucrium hyrcanicum

G. B. Oganesyan UDC 547.972

Teucrium hyrcanicum L. (Lamiaceae) is an endemic species, the name of which is derived from the ancient Latin name for the Caspian Sea, *Marum Hyrcanum*. The chemical composition and hypotensive and coagulatory activities of flavonoids from this plant have been reported [1-3].

In continuation of research on biologically active flavonoids, a minor flavonoid component (cyanidin reaction and IR and UV spectra) was isolated from the ethylacetate fraction of the methanol extract of T. hyrcanicum [4] by column chromatography (CC) over polyamide with subsequent CC over silica gel L (40/100 μ) with elution by CHCl₃ (3% MeOH).

Compound 1, $C_{16}H_{12}O_6$, fine light-yellow needle-like crystals, mp (subl. 260°C) 290-291°C, R_f 0.26 (Silufol UV-254, CHCl₃:CH₃OH, 19:1, system 1), 0.31 (CHCl₃:CH₃OH, 9:1, system 2). UV spectrum (CH₃OH, λ_{max} , nm): 219, 232 sh, 287, 333 (log ϵ 4.51, 4.32, 4.38, 4.45). Mass spectrum (EI, 70 eV, m/z, I_{rel} , %): 300 (100) [M]⁺.

Comparison of TLC using system 1 found that $\bf 1$ is colored brown by aqueous FeCl₃ (9%) and has a chromatographic mobility between those of cirsiliol and pedalitin.

The UV spectrum of $\bf 1$ with ionizing and complexing reagents according to the literature [5]: (+MeONa) 231, 253 sh, 314 sh, 375 (log ϵ 4.37, 4.16, 4.26, 4.52); (+AcONa) 237, 287, 363, 382 (10') 237, 286, 341, 382 sh; (+AcONa + H_3BO_3) 232, 286, 337; (+AlCl₃) 232, 303, 366; (+AlCl₃ + HCl) 238, 301, 361; demonstrated the presence of 4'-OH, 5-OH, and 6-OH groups [6, 7] in addition to a substituted hydroxyl on C-7.

The mass spectrum of **1** contains fragments with m/z 182 (4) (ring A), 121 (6), 119 (12), and 118 (6) (ring B). The weakness of the quinoid ions with m/z 181 (3), 167 (3), 153 (5.5), 152 (9), 139 (9), and especially the ions for [M - CH₃]⁺ with m/z 285 (1) and [M - CH₃CO]⁺ with m/z 257 (7) and the corresponding ions for ring A demonstrate the important difference of a flavone with a 6-OCH₃ (hypsidulin) and a 3-OCH₃ and 8-OCH₃ from that with a 7-OCH₃ [8] and confirm that the structure of **1** is 5,6,4'-trihydroxy-7-methoxyflavone (7-methylscutellarein).

7-Methylscutellarein was observed in the genus *Teucrium* for the first time.

The more polar CHCl₃ fractions (6% CH₃OH) afforded pedalitin, luteolin, caffeic acid, and 3,4-dihydroxy- β -phenylethanol, which were identified by mixed melting points with authentic samples, comparative TLC, and mass spectrometry.

The methylated flavones pedalitin (5,6,3',4'-tetrahydroxy-7-methoxyflavone) [4] and 7-methylscutellarin that were isolated from *T. hyrcanicum* differ from each other by one hydroxyl group, analogously to the pair cirsiliol and cirsimaritin from *T. polium* L. [9]. The more oxidized pedalitin and cirsiliol (6-hydroxyluteolin derivatives) dominate quantitatively over the scutellarin derivatives.

REFERENCES

- 1. Plant Resources of the USSR. Flowering Plants, Their Chemical Composition and Use. Hippuridaceae and Lobeliaceae Families, P. D. Sokolov, ed., Nauka, St. Petersburg (1991), p. 98.
- 2. Z. M. Bunatyan, N. O. Stepanyan, G. B. Oganesyan, and V. A. Mnatsakanyan, Rastit. Resur., 30, 91 (1994).
- 3. G. B. Oganesyan, V. A. Mnatsakanyan, E. Gach-Baits, and L. Radich, Arm. Khim. Zh., 42, 646 (1989).
- 4. G. B. Oganesyan and V. A. Mnatsakanyan, *Khim. Prir. Soedin.*, 910 (1987).

A. L. Mndzhoyan Institute of Fine Organic Chemistry, NANRA, Erevan, fax (3741) 28 83 32, e-mail: Hyrcanamarum@yahoo.com. Translated from Khimiya Prirodnykh Soedinenii, No. 2, p. 181, March-April, 2005. Original article submitted November 8, 2004.

- 5. T. J. Mabry, K. R. Markham, and M. B. Thomas, *The Systematic Identification of Flavonoids* Springer-Verlag, New York (1970).
- 6. L. K. Klyshev, V. A. Bandyukova, and L. S. Alyukina, *Plant Flavonoids* [in Russian], Nauka, Alma-Ata (1978).
- 7. J. A. Mears and T. J. Mabry, *Phytochemistry*, **11**, 411 (1972).
- 8. D. J. I. Kingston, *Tetrahedron*, **27**, 2691 (1971).
- 9. G. B. Oganesyan and V. A. Mnatsakanyan, Arm. Khim. Zh., 38, 57 (1985).